Magic state cultivation on a superconducting quantum processor

Summarize this article with:
Quantum Physics arXiv:2512.13908 (quant-ph) [Submitted on 15 Dec 2025] Title:Magic state cultivation on a superconducting quantum processor Authors:Emma Rosenfeld, Craig Gidney, Gabrielle Roberts, Alexis Morvan, Nathan Lacroix, Dvir Kafri, Jeffrey Marshall, Ming Li, Volodymyr Sivak, Dmitry Abanin, Amira Abbas, Rajeev Acharya, Laleh Aghababaie Beni, Georg Aigeldinger, Ross Alcaraz, Sayra Alcaraz, Trond I. Andersen, Markus Ansmann, Frank Arute, Kunal Arya, Walt Askew, Nikita Astrakhantsev, Juan Atalaya, Ryan Babbush, Brian Ballard, Joseph C. Bardin, Hector Bates, Andreas Bengtsson, Majid Bigdeli Karimi, Alexander Bilmes, Simon Bilodeau, Felix Borjans, Jenna Bovaird, Dylan Bowers, Leon Brill, Peter Brooks, Michael Broughton, David A. Browne, Brett Buchea, Bob B. Buckley, Tim Burger, Brian Burkett, Nicholas Bushnell, Jamal Busnaina, Anthony Cabrera, Juan Campero, Hung-Shen Chang, Silas Chen, Zijun Chen, Ben Chiaro, Liang-Ying Chih, Agnetta Y. Cleland, Bryan Cochrane, Matt Cockrell, Josh Cogan, Paul Conner, Harold Cook, Rodrigo G. Cortiñas, William Courtney, Alexander L. Crook, Ben Curtin, Martin Damyanov, Sayan Das, Dripto M. Debroy, Sean Demura, Paul Donohoe, Ilya Drozdov, Andrew Dunsworth, Valerie Ehimhen, Alec Eickbusch, Aviv Moshe Elbag, Lior Ella, Mahmoud Elzouka, David Enriquez, Catherine Erickson, Lara Faoro, Vinicius S. Ferreira, Marcos Flores, Leslie Flores Burgos, Sam Fontes, Ebrahim Forati, Jeremiah Ford, Brooks Foxen, Masaya Fukami, Alan Wing Lun Fung, Lenny Fuste, Suhas Ganjam, Gonzalo Garcia, Christopher Garrick, Robert Gasca, Helge Gehring, Robert Geiger, Élie Genois, William Giang, Dar Gilboa, James E. Goeders, Edward C. Gonzales, Raja Gosula, Stijn J. de Graaf, Alejandro Grajales Dau , Dietrich Graumann, Joel Grebel, Alex Greene, Jonathan A. Gross, Jose Guerrero, Loïck Le Guevel, Tan Ha, Steve Habegger, Tanner Hadick, Ali Hadjikhani, Michael C. Hamilton, Monica Hansen, Matthew P. Harrigan, Sean D. Harrington, Jeanne Hartshorn, Stephen Heslin, Paula Heu, Oscar Higgott, Reno Hiltermann, Jeremy Hilton, Hsin-Yuan Huang, Mike Hucka, Christopher Hudspeth, Ashley Huff, William J. Huggins, Lev B. Ioffe, Evan Jeffrey, Shaun Jevons, Zhang Jiang, Xiaoxuan Jin, Chaitali Joshi, Pavol Juhas, Andreas Kabel, Hui Kang, Kiseo Kang, Amir H. Karamlou, Ryan Kaufman, Kostyantyn Kechedzhi, Tanuj Khattar, Mostafa Khezri, Seon Kim, Paul V. Klimov, Can M. Knaut, Bryce Kobrin, Alexander N. Korotkov, Fedor Kostritsa, John Mark Kreikebaum, Ryuho Kudo, Ben Kueffler, Arun Kumar, Vladislav D. Kurilovich, Vitali Kutsko, Tiano Lange-Dei, Brandon W. Langley, Pavel Laptev, Kim-Ming Lau, Emma Leavell, Justin Ledford, Joy Lee, Kenny Lee, Brian J. Lester, Wendy Leung, Lily Li, Wing Yan Li, Alexander T. Lill, William P. Livingston, Matthew T. Lloyd, Aditya Locharla, Laura De Lorenzo, Erik Lucero, Daniel Lundahl, Aaron Lunt, Sid Madhuk, Aniket Maiti, Ashley Maloney, Salvatore Mandrà, Leigh S. Martin, Orion Martin, Eric Mascot, Paul Masih Das, Dmitri Maslov, Melvin Mathews, Cameron Maxfield, Jarrod R. McClean, Matt McEwen, Seneca Meeks, Anthony Megrant, Kevin C. Miao, Zlatko K. Minev, Reza Molavi, Sebastian Molina, Shirin Montazeri, Charles Neill, Michael Newman, Anthony Nguyen, Murray Nguyen, Chia-Hung Ni, Murphy Yuezhen Niu, Nicholas Noll, Logan Oas, William D. Oliver, Raymond Orosco, Kristoffer Ottosson, Alice Pagano, Agustin Di Paolo, Sherman Peek, David Peterson, Alex Pizzuto, Elias Portoles, Rebecca Potter, Orion Pritchard, Michael Qian, Chris Quintana, Ganesh Ramachandran, Arpit Ranadive, Matthew J. Reagor, Rachel Resnick, David M. Rhodes, Daniel Riley, Roberto Rodriguez, Emma Ropes, Lucia B. De Rose, Eliott Rosenberg, Dario Rosenstock, Elizabeth Rossi, Pedram Roushan, David A. Rower, Robert Salazar, Kannan Sankaragomathi, Murat Can Sarihan, Max Schaefer, Sebastian Schroeder, Henry F. Schurkus, Aria Shahingohar, Michael J. Shearn, Aaron Shorter, Noah Shutty, Vladimir Shvarts, Spencer Small, W. Clarke Smith, David A. Sobel, Barrett Spells, Sofia Springer, George Sterling, Jordan Suchard, Aaron Szasz, Alexander Sztein, Madeline Taylor, Jothi Priyanka Thiruraman, Douglas Thor, Dogan Timucin, Eifu Tomita, Alfredo Torres, M. Mert Torunbalci, Hao Tran, Abeer Vaishnav, Justin Vargas, Sergey Vdovichev, Guifre Vidal, Benjamin Villalonga, Catherine Vollgraff Heidweiller, Meghan Voorhees, Steven Waltman, Jonathan Waltz, Shannon X. Wang, Danni Wang, Brayden Ware, James D. Watson, Yonghua Wei, Travis Weidel, Theodore White, Kristi Wong, Bryan W. K. Woo, Christopher J. Wood, Maddy Woodson, Cheng Xing, Z. Jamie Yao, Ping Yeh, Bicheng Ying, Juhwan Yoo, Noureldin Yosri, Elliot Young, Grayson Young, Adam Zalcman, Ran Zhang, Yaxing Zhang, Ningfeng Zhu, Nicholas Zobrist, Zhenjie Zou, Hartmut Neven, Sergio Boixo, Cody Jones, Julian Kelly, Alexandre Bourassa, Kevin J. Satzinger et al. (195 additional authors not shown) You must enable JavaScript to view entire author list. View a PDF of the paper titled Magic state cultivation on a superconducting quantum processor, by Emma Rosenfeld and 294 other authors View PDF HTML (experimental) Abstract:Fault-tolerant quantum computing requires a universal gate set, but the necessary non-Clifford gates represent a significant resource cost for most quantum error correction architectures. Magic state cultivation offers an efficient alternative to resource-intensive distillation protocols; however, testing the proposal's assumptions represents a challenging departure from quantum memory experiments. We present an experimental study of magic state cultivation on a superconducting quantum processor. We implement cultivation, including code-switching into a surface code, and develop a fault-tolerant measurement protocol to bound the magic state fidelity. Cultivation reduces the error by a factor of 40, with a state fidelity of 0.9999(1) (retaining 8% of attempts). Our results experimentally establish magic state cultivation as a viable solution to one of quantum computing's most significant challenges. Subjects: Quantum Physics (quant-ph) Cite as: arXiv:2512.13908 [quant-ph] (or arXiv:2512.13908v1 [quant-ph] for this version) https://doi.org/10.48550/arXiv.2512.13908 Focus to learn more arXiv-issued DOI via DataCite (pending registration) Submission history From: Emma Rosenfeld [view email] [v1] Mon, 15 Dec 2025 21:29:40 UTC (3,549 KB) Full-text links: Access Paper: View a PDF of the paper titled Magic state cultivation on a superconducting quantum processor, by Emma Rosenfeld and 294 other authorsView PDFHTML (experimental)TeX Source view license Current browse context: quant-ph new | recent | 2025-12 References & Citations INSPIRE HEP NASA ADSGoogle Scholar Semantic Scholar export BibTeX citation Loading... BibTeX formatted citation × loading... Data provided by: Bookmark Bibliographic Tools Bibliographic and Citation Tools Bibliographic Explorer Toggle Bibliographic Explorer (What is the Explorer?) Connected Papers Toggle Connected Papers (What is Connected Papers?) Litmaps Toggle Litmaps (What is Litmaps?) scite.ai Toggle scite Smart Citations (What are Smart Citations?) Code, Data, Media Code, Data and Media Associated with this Article alphaXiv Toggle alphaXiv (What is alphaXiv?) Links to Code Toggle CatalyzeX Code Finder for Papers (What is CatalyzeX?) DagsHub Toggle DagsHub (What is DagsHub?) GotitPub Toggle Gotit.pub (What is GotitPub?) Huggingface Toggle Hugging Face (What is Huggingface?) Links to Code Toggle Papers with Code (What is Papers with Code?) ScienceCast Toggle ScienceCast (What is ScienceCast?) Demos Demos Replicate Toggle Replicate (What is Replicate?) Spaces Toggle Hugging Face Spaces (What is Spaces?) Spaces Toggle TXYZ.AI (What is TXYZ.AI?) Related Papers Recommenders and Search Tools Link to Influence Flower Influence Flower (What are Influence Flowers?) Core recommender toggle CORE Recommender (What is CORE?) Author Venue Institution Topic About arXivLabs arXivLabs: experimental projects with community collaborators arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website. Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them. Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs. Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
