Information-Theoretic and Operational Measures of Quantum Contextuality
Summarize this article with:
Quantum Physics arXiv:2512.11049 (quant-ph) [Submitted on 11 Dec 2025] Title:Information-Theoretic and Operational Measures of Quantum Contextuality Authors:Ali Can Günhan, Mehmet Zafer Gedik View a PDF of the paper titled Information-Theoretic and Operational Measures of Quantum Contextuality, by Ali Can G\"unhan and 1 other authors View PDF HTML (experimental) Abstract:We propose an information -- theoretic framework for quantifying Kochen-Specker contextuality. Two complementary measures are introduced: the mutual information energy, a state-independent quantity inspired by Onicescu's information energy that captures the geometric overlap between joint eigenspaces within a context; and an operational measure based on commutator expectation values that reflects contextual behavior at the level of measurement outcomes. We establish a hierarchy of bounds connecting these measures to the Robertson uncertainty relation, including spectral, purity-corrected, and operator norm estimates. The framework is applied to the Klyachko-Can-Binicioğlu-Shumovsky (KCBS) scenario for spin-1 systems, where all quantities admit closed-form expressions. The Majorana-stellar representation furnishes a common geometric platform on which both the operational measure and the uncertainty products can be analyzed. For spin-1, this representation yields a three-dimensional Euclidean-like visualization of the Hilbert space in which, states lying on a plane exhibit maximum uncertainty for the observable along the perpendicular direction; simultaneous optimization across all KCBS contexts singles out a unique state on the symmetry axis. Notably, states achieving the optimal sum of uncertainty products exhibit vanishing operational contextuality, while states with substantial operational contextuality satisfy a nontrivial Robertson bound -- the two extremes are achieved by distinct quantum states. Comments: Subjects: Quantum Physics (quant-ph) Cite as: arXiv:2512.11049 [quant-ph] (or arXiv:2512.11049v1 [quant-ph] for this version) https://doi.org/10.48550/arXiv.2512.11049 Focus to learn more arXiv-issued DOI via DataCite (pending registration) Submission history From: Ali Can Günhan [view email] [v1] Thu, 11 Dec 2025 19:08:58 UTC (2,069 KB) Full-text links: Access Paper: View a PDF of the paper titled Information-Theoretic and Operational Measures of Quantum Contextuality, by Ali Can G\"unhan and 1 other authorsView PDFHTML (experimental)TeX Source view license Current browse context: quant-ph new | recent | 2025-12 References & Citations INSPIRE HEP NASA ADSGoogle Scholar Semantic Scholar export BibTeX citation Loading... BibTeX formatted citation × loading... Data provided by: Bookmark Bibliographic Tools Bibliographic and Citation Tools Bibliographic Explorer Toggle Bibliographic Explorer (What is the Explorer?) Connected Papers Toggle Connected Papers (What is Connected Papers?) Litmaps Toggle Litmaps (What is Litmaps?) scite.ai Toggle scite Smart Citations (What are Smart Citations?) Code, Data, Media Code, Data and Media Associated with this Article alphaXiv Toggle alphaXiv (What is alphaXiv?) Links to Code Toggle CatalyzeX Code Finder for Papers (What is CatalyzeX?) DagsHub Toggle DagsHub (What is DagsHub?) GotitPub Toggle Gotit.pub (What is GotitPub?) Huggingface Toggle Hugging Face (What is Huggingface?) Links to Code Toggle Papers with Code (What is Papers with Code?) ScienceCast Toggle ScienceCast (What is ScienceCast?) Demos Demos Replicate Toggle Replicate (What is Replicate?) Spaces Toggle Hugging Face Spaces (What is Spaces?) Spaces Toggle TXYZ.AI (What is TXYZ.AI?) Related Papers Recommenders and Search Tools Link to Influence Flower Influence Flower (What are Influence Flowers?) Core recommender toggle CORE Recommender (What is CORE?) Author Venue Institution Topic About arXivLabs arXivLabs: experimental projects with community collaborators arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website. Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them. Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs. Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
