Characterizing entanglement shareability and distribution in $N$-partite systems

Summarize this article with:
Quantum Physics arXiv:2512.15018 (quant-ph) [Submitted on 17 Dec 2025] Title:Characterizing entanglement shareability and distribution in $N$-partite systems Authors:Hui Li, Ting Gao, Fengli Yan View a PDF of the paper titled Characterizing entanglement shareability and distribution in $N$-partite systems, by Hui Li and 2 other authors View PDF HTML (experimental) Abstract:Exploring the shareability and distribution of entanglement possesses fundamental significance in quantum information tasks. In this paper, we demonstrate that the square of bipartite entanglement measures $G_q$-concurrence, which is the generalization of concurrence, follows a set of hierarchical monogamy relations for any $N$-qubit quantum state. On the basis of these monogamy inequalities, we render two kinds of hierarchical indicators that exhibit evident advantages in the capacity of witnessing entanglement. Moreover, we show an analytical relation between $G_q$-concurrence and concurrence in $2\otimes d$ systems. Furthermore, we rigorously prove that the monogamy property of squared $G_q$-concurrence is superior to that of squared concurrence in $2\otimes d_2\otimes d_3\otimes\cdots\otimes d_N$ systems. In addition, several concrete examples are provided to illustrate that for multilevel systems, the squared $G_q$-concurrence satisfies the monogamy relation, even if the squared concurrence does not. These results better reveal the intriguing characteristic of multilevel entanglement and provide critical insights into the entanglement distribution within multipartite quantum systems. Comments: Subjects: Quantum Physics (quant-ph) Cite as: arXiv:2512.15018 [quant-ph] (or arXiv:2512.15018v1 [quant-ph] for this version) https://doi.org/10.48550/arXiv.2512.15018 Focus to learn more arXiv-issued DOI via DataCite (pending registration) Submission history From: Ting Gao [view email] [v1] Wed, 17 Dec 2025 02:17:45 UTC (36 KB) Full-text links: Access Paper: View a PDF of the paper titled Characterizing entanglement shareability and distribution in $N$-partite systems, by Hui Li and 2 other authorsView PDFHTML (experimental)TeX Source view license Current browse context: quant-ph new | recent | 2025-12 References & Citations INSPIRE HEP NASA ADSGoogle Scholar Semantic Scholar export BibTeX citation Loading... BibTeX formatted citation × loading... Data provided by: Bookmark Bibliographic Tools Bibliographic and Citation Tools Bibliographic Explorer Toggle Bibliographic Explorer (What is the Explorer?) Connected Papers Toggle Connected Papers (What is Connected Papers?) Litmaps Toggle Litmaps (What is Litmaps?) scite.ai Toggle scite Smart Citations (What are Smart Citations?) Code, Data, Media Code, Data and Media Associated with this Article alphaXiv Toggle alphaXiv (What is alphaXiv?) Links to Code Toggle CatalyzeX Code Finder for Papers (What is CatalyzeX?) DagsHub Toggle DagsHub (What is DagsHub?) GotitPub Toggle Gotit.pub (What is GotitPub?) Huggingface Toggle Hugging Face (What is Huggingface?) Links to Code Toggle Papers with Code (What is Papers with Code?) ScienceCast Toggle ScienceCast (What is ScienceCast?) Demos Demos Replicate Toggle Replicate (What is Replicate?) Spaces Toggle Hugging Face Spaces (What is Spaces?) Spaces Toggle TXYZ.AI (What is TXYZ.AI?) Related Papers Recommenders and Search Tools Link to Influence Flower Influence Flower (What are Influence Flowers?) Core recommender toggle CORE Recommender (What is CORE?) Author Venue Institution Topic About arXivLabs arXivLabs: experimental projects with community collaborators arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website. Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them. Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs. Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
